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Hidden linear optical response reveals crystalline
symmetry
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We show that a linear quadrupole response from a crys-
talline material to externally applied optical fields exists
and has gone unnoticed, even though its nonlinear opti-
cal cousin has been studied and explored extensively
for decades. Such a linear quadrupole response reveals
the symmetry of the crystal, just as its nonlinear optical
counterpart has done, and can be used to investigate phase
transitions non-intrusively with high spatial and temporal
resolution. ©2020Optical Society of America

https://doi.org/10.1364/OL.390183

Symmetry-dependent linear and nonlinear responses of all
kinds in solid and liquid crystalline materials to external stimuli
reveal phases of materials. Among them optical responses are
unique, as (1) they can be obtained in non-contact ways; (2) they
have high spatial resolutions for microscopy; and (3) they have
unmatched time resolutions for dynamic studies. Not surpris-
ingly, symmetry-dependent nonlinear optical responses have
been extensively explored for phase transition studies in 2D and
3D material systems since the early days of nonlinear optics up
to very recently [1–14].

An externally applied electromagnetic field causes electrons
in a solid material to produce a time and spatially varying polari-
zation P(r, t). P(r, t) is a function of the electric field, the
magnetic field, and their gradients [3]. The leading terms in
P(r, t) are responses that depend linearly on the electromag-
netic fields. Traditionally, only the response that varies linearly
with the electric field has been considered, but not the gradient
of the electric field and the magnetic field. Such a truncated
linear response is represented by a linear dielectric tensor of
first rank and produces the usual reflected and transmitted
electromagnetic waves. The linear dielectric tensor depends on
the symmetry of the material in a most crude way and is thus
rarely used in studies of phase transition except for melting.
Nonlinear optical responses make up for the remaining terms
in P(r, t), and they depend on products of no fewer than two
of the electric field, the magnetic field, and their gradients. In
these cases, the nonlinear polarization varies with the electric
field and the magnetic field through tensors of second or higher
rank. These second or higher rank tensors were recognized to be
strongly symmetry dependent from the beginning [1,2]. As a

result, nonlinear optical responses including those involving
gradients of the electric field have been investigated exten-
sively and exploited in phase transition studies since the early
1980s [3–14]. For example, Shank et al. and Tom et al. studied
melting of semiconductors by measuring bulk second-order
electric quadrupole responses as the crystalline solid becomes
an isotropic material in the phase transition [11,12]. Heinz
and coworkers studied surface phase transition on Si(111) by
measuring the dipole-allowed surface second-harmonic gener-
ation from two different surface reconstructions [8]. Zhu and
coworkers studied “phase transition” in evaporated gold films
by measuring the bulk second-harmonic generation involving
the gradient of the electric field [13]. A more recent example is
the second-harmonic generation study reported by Zhao and
coworkers of hidden phase transition in Sr2IrO4, a material
normally having inversion symmetry [14]. In this study by
measuring the azimuth-dependent second-order nonlinear
optical response, these authors uncovered a hidden phase that
breaks inversion symmetry. This transition evaded the linear
x-ray and neutron diffraction measurements. These authors
further demonstrated the utility of high spatial resolution of the
coherent optical measurement when they needed to examine the
phase transition in a single domain instead of an average in four
differently oriented domains that would have washed out the
evidence of the new phase. They further showed the need to use
optic pulses less than 100 fs to avoid the sample heating, a crucial
requirement not met by longer optical pulses.

The success of nonlinear optical responses involving third or
higher rank tensors has innocently masked the fact that the lin-
ear response to the gradient of the electric field—the quadrupole
response—exists and also involves a second rank tensor [3]. This
linear response can be used to reveal the symmetry and thus the
phase of crystalline materials beyond the usual linear dielectric
tensor.

In this Letter, we explore this forgotten linear optical response
both theoretically and experimentally, partly to add the miss-
ing piece in description of optical responses to the symmetry
of a crystalline material. It is easy to understand why such a
second rank linear response has gone unnoticed. Compared
to the leading-order linear response (i.e., the electric dipole
response), it is weaker by the ratio of Bohr radius a B to the opti-
cal wavelength λ, i.e., 10−3; thus, its contributions to reflection
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and transmission are “hidden” and easily ignored. Although
magneto-optic responses from a solid are as weak or weaker
[15–17], they can be modulated with an externally applied mag-
netic field and thus are detectable using modulation schemes.
We recognize that the linear optical response from a monolayer
or less of dielectric materials on top of a different solid material
yields signals comparable to that of a bulk linear quadrupole
response, and the former has been detected routinely with
ellipsometry in surface and thin film studies [18–22]. It should
then be feasible to detect the linear quadrupole response once its
symmetry-dependent signature is explored and understood.

We start with a full linear polarization as follows:

P (1)
α = χ

(1)
D,αβEβ + χ

(1)
M,αβBβ + χ

(1)
Q,αβγ∇βEγ + χ

(1)
MQ,αβγ∇βBγ .

(1)
The first term yields the usual dielectric tensor of first rank.
It includes magneto-optic effects if a magnetization or a dc
magnetic field is present. The second term is a first rank linear
response to the magnetic part of the applied electromagnetic
wave and has been ignored so far as well. Its effect is weaker
than the first term by the ratio of the electron velocity to the
speed of light, i.e., by a factor of 100. The third term is a linear
quadrupole response to the gradient of the electric field—the
term of interest in this work. Being an optical response of second
rank, it is symmetry dependent just as a third rank optical
second-harmonic generation. Being a second rank optical proc-
ess, the linear quadrupole response is non-vanishing only in
materials lacking an inversion center. The fourth term is another
linear quadruple response but to the gradient of the magnetic
field. It is weaker than the third term by a factor of 1000, and we
will not consider it further.

Consider a GaAs crystal with a Td symmetry. Its usual linear
dielectric tensor is a unity tensor or a unity matrix multiplied by
a scalar dielectric constant ε. Such a tensor reveals nothing about
the crystalline symmetry of GaAs, as if the latter may just as well
be an isotropic material. In fact the dielectric tensor of GaAs is
indistinguishable from that of Si, which has a different cubic
symmetry Oh . One manifestation of such an “isotropic” dielec-
tric tensor is that the optical reflection from a GaAs or Si surface
is not expected to change with the azimuthal orientation about
the normal of the sample surface. When the linear quadrupole
response is taken into consideration, GaAs starts to behave
differently from Si. The centrosymmetric Si crystal has no linear
quadrupole response. The GaAs crystal on the other hand has
no inversion center, and thus its linear quadrupole response is
non-vanishing. The latter is characterized by one susceptibil-
ity element [3]. We show that on a GaAs(100) surface, this
quadrupole response yields an extra reflection that varies with
the azimuthal orientation of the surface. Let the laboratory x
axis and y axis overlap with (100) and (010) axes of a GaAs(100)
wafer. Let the z axis be along the (001) axis pointing into the
sample. In this coordinate frame, the third term in Eq. (1) is
expressed as follows:

δP (1)
x = iχ (1)Q,x zx kz E y , (2a)

δP (1)
y = iχ (1)Q,x zx (kz E x + kx E z), (2b)

δP (1)
z = iχ (1)Q,x zx kx E y . (2c)

Let d14 ≡ χ
(1)
Q,x zx . When the sample subsequently rotates about

the z axis by an azimuth θ , Eq. (2) becomes

δP (1)
x = id14

[
kz E y cos 2θ + (kz E x + kx E z) sin 2θ

]
, (3a)

δP (1)
y = id14

[
(kz E x + kx E z) cos 2θ − kz E y sin 2θ

]
, (3b)

δP (1)
z = id14kx

(
E y cos 2θ − E x sin 2θ

)
. (3c)

At normal incidence with kx = 0 and kz = k, we have a modified
dielectric tensor:

←→ε =

(
ε + id14k sin 2θ id14k cos 2θ 0

id14k cos 2θ ε − id14k sin 2θ 0
0 0 ε

)
. (4)

The extra tensor elements modify the usual reflection coeffi-
cients for s - and p-polarized light. If we use the reflection matrix
to relate the incident and reflected electric fields for s and p
polarization [23],(

E (r )
p

E (r )
s

)
=

(
rpp rps
r sp r ss

)(
E (inc)

p
E (inc)

s

)
, (5)

it can be readily shown that [24](
rpp rps
r sp r ss

)
=

(
r0 − a ∗ sin 2θ − a ∗ cos 2θ
− a ∗ cos 2θ r0 + a ∗ sin 2θ

)
. (6)

Here r0 = (
√
ε − 1)/(

√
ε + 1) is the Fresnel coefficient of

GaAs at normal incidence from air without the quadrupole
response, and a = id14(2π/λ)ε/(

√
ε + 1)2.

The azimuth-dependent correction to the linear optical
reflection can be observed with a normal-incidence reflectivity
difference setup as illustrated in Fig. 1.

A p-polarized He–Ne laser beam with a diameter of 2 mm
and a power of 500 µW passes through a photo-elastic modula-
tor (PEM) with its fast axis set at 45◦ and adding a time-varying
phase8(t)=80 cos(2π f t) between the fast axis and the slow-
axis components at f = 50 kHz. We use 80 = π/2. It is then
incident on the sample near normal incidence. The reflected
beam is detected with a Si PIN photo-receiver and the phase-
sensitive analyzer (i.e., lock-in amplifiers). The first and second
harmonics of the detected reflection are given respectively as
follows [24]:

I ( f )= 4 ∗ Iinc ∗ |r0|
2
∗ J1(80)∗Re{a/r0}∗ cos 2θ, (7a)

Fig. 1. Optical setup for measuring normal-incidence reflectivity
difference between two orthogonal, linear polarizations as a function of
azimuth orientation of the sample. The sample is either a GaAs(100)
wafer or a Si(100) wafer.
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I (2 f )= 4 ∗ Iinc ∗ |r0|
2
∗J2(80) ∗ Re{a/r0} ∗ sin 2θ . (7b)

J1(80) and J2(80) are Bessel functions of the first kind.
We measure Iinc ∗ |r0|

2 separately and in turn determine
Re{a/r0} cos 2θ and Re{a/r0} sin 2θ .

Figure 2 shows measured I ( f ) and I (2 f ) from a GaAs(100)
wafer in air after normalization with c ′ Iinc. Both harmonics
exhibit components that vary with the azimuth θ with mag-
nitudes in the range of 10−3, as we have anticipated a linear
quadrupole response. Furthermore, the first harmonic indeed
varies as prescribed in Eq. (7a), and the second harmonic varies
as sin 2θ , again in agreement with Eq. (7b). For comparison
(negative control), we measured the first and second harmonics
from a Si(100) wafer and the results are displayed in Fig. 3 over
the same signal range. Now neither harmonic shows a sign of
azimuth dependence, consistent with the fact that the Si sample
has an inversion center and thus possesses no linear quadrupole
response.

We discuss the significance of the work presented so far. It is
clear that the linear electric quadrupole response exists for crys-
talline materials lacking an inversion center, albeit 1000-fold
weaker than the leading electric dipole response. As a higher
ranked dielectric process though, the quadrupole response is
more symmetry sensitive than the dipole response. It reveals the
symmetry of a material as much as the second rank second-order
nonlinear optical response. By measuring the azimuth depend-
ence of I ( f ) and I (2 f ) at oblique incidence as well as normal
incidence, one can distinguish crystals from different crystalline
classes and, more importantly, different groups within same
crystalline class (we will describe in detail in a separate, long

Fig. 2. Linear electric quadrupole response versus azimuth ori-
entation from GaAs(100). Left panel: measured first-harmonic I( f )
normalized by Iinc|r0|

2 versus azimuth θ from a GaAs(100) wafer in air.
Right panel: second-harmonic I(2 f ) after normalization by Iinc|r0|

2

versus θ measured from the GaAs(100) wafer.

Fig. 3. Lack of linear electric quadrupole response from Si(100).
Left panel: first-harmonic I( f ) normalized by Iinc|r0|

2 versus azimuth
θ measured from a Si(100) wafer in air. Right panel: second-harmonic
I(2 f ) after normalization by Iinc|r0|

2 versus θ from the Si(100) wafer.

report [24]). As we demonstrated in this work for a normal-
incidence reflectivity difference detection (Fig. 1) and Zhu
and coworkers have reported extensively for oblique-incidence
reflectivity difference detection [18–22,25], the leading-order
dipole response is suppressed in these reflectivity difference
detection schemes, as illustrated in Eq. (7) and in Figs. 2 and
3. In practice we should point out that unlike GaAs(100) and
Si(100) wafers that we investigated here, surfaces of many crys-
talline samples may consist of an ensemble of single domains
that are smaller than a few mm across and have different ori-
entations, as encountered by Zhao and coworkers [14]. If one
does not focus the illumination beam on a single domain, the
azimuth dependence of the linear quadrupole response may
be averaged out as if they do not exist. For this reason, it is best
to measure I ( f ) and I (2 f ) in a microscopic configuration
to ensure that only the response for a single domain is inter-
rogated. The advantage of using a linear quadrupole response
to determine crystalline phases and study phase transition, to
the extent they exhibit characteristic azimuth dependence, is
that it is simple and can be done with such low optical powers
that do not raise the electron temperature over 1 K. Of course,
for crystalline materials possessing inversion centers, the linear
electric quadrupole response vanishes. In these cases, one can
fall back to the second-order quadrupole responses. For non-
central symmetric crystals that are anisotropic, the leading-order
electric dipole response already yields an azimuth-dependent
signal. The latter can overwhelm the signal from the electric
quadrupole response. In these cases, the second-order elec-
tric quadrupole response suffers equally in the presence of an
azimuth-dependent, second-order electric dipole response. We
note here that the hidden phase of Sr2IrO4 that breaks the inver-
sion symmetry should yield an observable azimuth-dependent
linear optical response that is absent when the crystal is not in
such a phase.

In summary, we uncovered the linear quadruple response of a
material to an electromagnetic wave and demonstrated its utility
in revealing the crystalline symmetry of the material. In a way,
it completes the description of optical responses to symmetry
properties of materials. Though the magnetic dipole response
[the second term in Eq. (1)] is also included in this uncovering
effort, it is a dielectric process of second rank and reveals no new
information on crystalline symmetry of the material except for
contributing an isotropic signal that is 100-fold weaker.
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